全部版块 我的主页
论坛 经济学人 二区 外文文献专区
509 0
2022-03-11
摘要翻译:
我们引入变量重要性度量来量化单个输入变量对黑箱函数的影响。我们的测度是基于合作博弈论中的Shapley值。许多变量重要性的度量是通过改变一些预测值而其他预测值保持不变来操作的,这可能会产生不太可能甚至逻辑上不可能的组合。我们的队列Shapley测量只使用观察到的数据点。我们不是改变一个预测值,而是在该预测值上包括或排除与目标对象相似的对象,以形成一个相似队列。然后我们将Shapley值应用于队列平均值。我们将可解释人工智能中的变量重要性度量与全局灵敏度分析中的函数分解联系起来。我们引入了一个平方队列Shapley值,它分裂了先前研究的Shapley效应,符合Shapley公理。
---
英文标题:
《Explaining black box decisions by Shapley cohort refinement》
---
作者:
Masayoshi Mase and Art B. Owen and Benjamin Seiler
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  We introduce a variable importance measure to quantify the impact of individual input variables to a black box function. Our measure is based on the Shapley value from cooperative game theory. Many measures of variable importance operate by changing some predictor values with others held fixed, potentially creating unlikely or even logically impossible combinations. Our cohort Shapley measure uses only observed data points. Instead of changing the value of a predictor we include or exclude subjects similar to the target subject on that predictor to form a similarity cohort. Then we apply Shapley value to the cohort averages. We connect variable importance measures from explainable AI to function decompositions from global sensitivity analysis. We introduce a squared cohort Shapley value that splits previously studied Shapley effects over subjects, consistent with a Shapley axiom.
---
PDF链接:
https://arxiv.org/pdf/1911.00467
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群