全部版块 我的主页
论坛 经济学人 二区 外文文献专区
641 0
2022-03-11
摘要翻译:
独立低秩矩阵分析(ILRMA)是一种快速稳定的盲音频源分离方法。传统的ILRMAs假设时变(超)高斯源模型,只能表示服从超高斯分布的信号。本文重点研究了基于广义高斯分布的ILRMA(GGD-ILRMA),提出了一种新的GGD-ILRMA,它采用时变次高斯分布作为源模型。通过对齐次源模型的广义迭代投影更新,我们得到了一个收敛保证的空间参数更新规则。在实验评价中,我们展示了所提方法的通用性,即所提时变次高斯信源模型可以适用于各种类型的信源信号。
---
英文标题:
《Independent Low-Rank Matrix Analysis Based on Time-Variant Sub-Gaussian
  Source Model》
---
作者:
Shinichi Mogami, Norihiro Takamune, Daichi Kitamura, Hiroshi
  Saruwatari, Yu Takahashi, Kazunobu Kondo, Hiroaki Nakajima, Nobutaka Ono
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Independent low-rank matrix analysis (ILRMA) is a fast and stable method for blind audio source separation. Conventional ILRMAs assume time-variant (super-)Gaussian source models, which can only represent signals that follow a super-Gaussian distribution. In this paper, we focus on ILRMA based on a generalized Gaussian distribution (GGD-ILRMA) and propose a new type of GGD-ILRMA that adopts a time-variant sub-Gaussian distribution for the source model. By using a new update scheme called generalized iterative projection for homogeneous source models, we obtain a convergence-guaranteed update rule for demixing spatial parameters. In the experimental evaluation, we show the versatility of the proposed method, i.e., the proposed time-variant sub-Gaussian source model can be applied to various types of source signal.
---
PDF链接:
https://arxiv.org/pdf/1808.08056
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群