全部版块 我的主页
论坛 经济学人 二区 外文文献专区
417 0
2022-03-11
摘要翻译:
签名作为一种生物特征在各种系统中都有实现,而且每个人所签名的每个签名都是不同的。因此,有一个计算机化的签名验证系统是非常重要的。在离线签名验证系统中,动态特征并不明显,但可以将签名作为图像,应用图像处理技术来构造一个有效的离线签名验证系统。提出了一种将方向特征和能量密度作为输入的智能网络,并对签名进行了分类。该系统采用神经网络作为分类器。与最基本的能量密度法和一种简单的方向特征法进行了比较,结果表明,与上述两种方法相比,该网络是有效的,特别是在训练样本数较少的情况下,可以实际实现。
---
英文标题:
《A Directional Feature with Energy based Offline Signature Verification
  Network》
---
作者:
Minal Tomar and Pratibha Singh
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Signature used as a biometric is implemented in various systems as well as every signature signed by each person is distinct at the same time. So, it is very important to have a computerized signature verification system. In offline signature verification system dynamic features are not available obviously, but one can use a signature as an image and apply image processing techniques to make an effective offline signature verification system. Author proposes a intelligent network used directional feature and energy density both as inputs to the same network and classifies the signature. Neural network is used as a classifier for this system. The results are compared with both the very basic energy density method and a simple directional feature method of offline signature verification system and this proposed new network is found very effective as compared to the above two methods, specially for less number of training samples, which can be implemented practically.
---
PDF链接:
https://arxiv.org/pdf/1103.1205
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群