全部版块 我的主页
论坛 经济学人 二区 外文文献专区
270 0
2022-03-12
摘要翻译:
将Kohn有限理想型和D'Angelo有限型与$\bar\部分$-Neumann问题的次椭圆性的等价性推广到$C^n$中的伪凸域,其定义函数为一个在微分下闭的Denjoy-Carleman拟解析类。这个证明涉及到Denjoy-Carleman拟解析函数的芽环上的代数几何,该芽环是介于实解析函数的芽环和光滑函数的芽环之间的,不是已知的Noetherian。本文还证明了这类Denjoy-Carleman函数的芽环满足$\sqrt{acc}$性质,这是非诺以太环所能具有的最强性质之一。
---
英文标题:
《The Kohn Algorithm on Denjoy-Carleman Classes》
---
作者:
Andreea C. Nicoara
---
最新提交年份:
2014
---
分类信息:

一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  The equivalence of the Kohn finite ideal type and the D'Angelo finite type with the subellipticity of the $\bar\partial$-Neumann problem is extended to pseudoconvex domains in $C^n$ whose defining function is in a Denjoy-Carleman quasianalytic class closed under differentiation. The proof involves algebraic geometry over a ring of germs of Denjoy-Carleman quasianalytic functions that is not known to be Noetherian and that is intermediate between the ring of germs of real-analytic functions and the ring of germs of smooth functions. It is also shown that this type of ring of germs of Denjoy-Carleman functions satisfies the $\sqrt{acc}$ property, one of the strongest properties a non-Noetherian ring could possess.
---
PDF链接:
https://arxiv.org/pdf/0806.1917
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群