摘要翻译:
设X是光滑的,线性正规的n维复射影簇。假定X的射影对偶与定义多项式D(X)具有余维1。本文将D(X)范数的对数表示为能量泛函对X上Bergman度量的限制。对于光滑的平面曲线,我们证明了该能量泛函如何化为Kahler几何的标准作用泛函。
---
英文标题:
《Projective duality and K-energy asymptotics》
---
作者:
Sean Timothy Paul
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a smooth, linearly normal n dimensional complex projective variety. Assume that the projective dual of X has codimension one with defining polynomial D(X). In this paper the log of the norm of D(X) is expressed as the restriction to the Bergman metrics of an energy functional on X. We show how, for smooth plane curves, this energy functional reduces to the standard action functionals of Kahler geometry.
---
PDF链接:
https://arxiv.org/pdf/0811.2544