全部版块 我的主页
论坛 经济学人 二区 外文文献专区
426 0
2022-03-12
摘要翻译:
研究了带限图信号的采样与重构问题,其目标是选择一个规定基数的节点子集,保证以最小的重构误差对原始信号进行插值。我们提出了一种有效的迭代选择采样方法,并证明了在无噪声情况下,原始信号可以从选择的节点集合中准确地恢复出来。在有噪声测量的情况下,给出了算法重构误差的一个界。我们进一步讨论了未知支持度的带限信号的支持度识别问题,并证明了在一个实用充分条件下,所提出的框架需要最少的样本数才能完全识别支持度。通过对合成图和真实图的数值模拟,说明了所提方法的有效性。
---
英文标题:
《A Novel Scheme for Support Identification and Iterative Sampling of
  Bandlimited Graph Signals》
---
作者:
Abolfazl Hashemi, Rasoul Shafipour, Haris Vikalo, and Gonzalo Mateos
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  We study the problem of sampling and reconstruction of bandlimited graph signals where the objective is to select a node subset of prescribed cardinality that ensures interpolation of the original signal with the lowest reconstruction error. We propose an efficient iterative selection sampling approach and show that in the noiseless case the original signal is exactly recovered from the set of selected nodes. In the case of noisy measurements, a bound on the reconstruction error of the proposed algorithm is established. We further address the support identification of the bandlimited signal with unknown support and show that under a pragmatic sufficient condition, the proposed framework requires minimal number of samples to perfectly identify the support. The efficacy of the proposed methods are illustrated through numerical simulations on synthetic and real-world graphs.
---
PDF链接:
https://arxiv.org/pdf/1807.07184
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群