摘要翻译:
利用极大极小后悔准则描述了广义加性独立(GAI)实用程序的语义基础,并为此提出了几种新的查询类型和策略。利用模型中的局部GAI结构,获得了计算的可行性。本文的研究结果为实现基于偏好的约束配置优化以及多属性产品数据库的有效搜索提供了一种实用的方法。
---
英文标题:
《Minimax regret based elicitation of generalized additive utilities》
---
作者:
Darius Braziunas, Craig Boutilier
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We describe the semantic foundations for elicitation of generalized additively independent (GAI) utilities using the minimax regret criterion, and propose several new query types and strategies for this purpose. Computational feasibility is obtained by exploiting the local GAI structure in the model. Our results provide a practical approach for implementing preference-based constrained configuration optimization as well as effective search in multiattribute product databases.
---
PDF链接:
https://arxiv.org/pdf/1206.5255