摘要翻译:
深度
神经网络已经成为音频源分离(ASS)中不可缺少的技术。最近报道了一种CNN结构的变体MMDenseNet成功地解决了估计源振幅的ASS问题,并在DSD100数据集上获得了最先进的结果。为了进一步增强MMDenseNet,我们提出了一种新的架构,它将多尺度的长短时记忆(LSTM)与跳过连接集成在一起,以有效地建模音频上下文中的长时结构。实验结果表明,该方法的性能优于MMDenseNet、LSTM和两种网络的混合。所提模型的参数个数和处理时间均比简单共混时显著减少。此外,本文提出的方法比使用理想二值掩模的方法得到了更好的效果。
---
英文标题:
《MMDenseLSTM: An efficient combination of convolutional and recurrent
neural networks for audio source separation》
---
作者:
Naoya Takahashi, Nabarun Goswami, Yuki Mitsufuji
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Deep neural networks have become an indispensable technique for audio source separation (ASS). It was recently reported that a variant of CNN architecture called MMDenseNet was successfully employed to solve the ASS problem of estimating source amplitudes, and state-of-the-art results were obtained for DSD100 dataset. To further enhance MMDenseNet, here we propose a novel architecture that integrates long short-term memory (LSTM) in multiple scales with skip connections to efficiently model long-term structures within an audio context. The experimental results show that the proposed method outperforms MMDenseNet, LSTM and a blend of the two networks. The number of parameters and processing time of the proposed model are significantly less than those for simple blending. Furthermore, the proposed method yields better results than those obtained using ideal binary masks for a singing voice separation task.
---
PDF链接:
https://arxiv.org/pdf/1805.0241