全部版块 我的主页
论坛 经济学人 二区 外文文献专区
296 0
2022-03-13
摘要翻译:
提出了一种基于小学教与学的学习算法。方法是不断地评估学生,并对他们反复失败的例子进行训练,直到他们能够正确回答所有类型的问题。这种渐进的学习过程通过要求学生在失败的例子上最佳地投入学习时间来产生更好的学习曲线。将该算法应用于机器学习中,可以在特征空间中方差最大的数据上训练机器,从而提高了网络的泛化能力。该算法在数据挖掘、模型评估和稀有对象发现等领域有着广泛的应用。
---
英文标题:
《A Learning Algorithm based on High School Teaching Wisdom》
---
作者:
Ninan Sajeeth Philip
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine on a data with maximum variance in the feature space so that the generalization ability of the network improves. The algorithm has interesting applications in data mining, model evaluations and rare objects discovery.
---
PDF链接:
https://arxiv.org/pdf/1008.1643
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群