摘要翻译:
项权重方案常常支配着许多分类器的性能,如kNN、基于质心的分类器和支持向量机。文本分类中广泛使用的术语加权方案TF.IDF起源于信息检索领域。idf文本分类背后的直觉似乎不如IR合理。本文将反类别频率(icf)引入到术语加权方案中,提出了两种新的术语加权方案,即TF、icf和基于icf的有监督术语加权方案。TF.icf采用icf来代替idf因子,并支持出现在较少类别中的术语,而不是较少的文件。基于icf的方法将icf和相关频率(rf)结合起来,以有监督的方式对术语进行加权。我们的跨分类器和跨语料库实验表明,在宏观F1和微观F1方面,我们提出的方法优于或可比六个有监督项加权方案和三个传统方案。
---
英文标题:
《Inverse-Category-Frequency based supervised term weighting scheme for
text categorization》
---
作者:
Deqing Wang, Hui Zhang
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Term weighting schemes often dominate the performance of many classifiers, such as kNN, centroid-based classifier and SVMs. The widely used term weighting scheme in text categorization, i.e., tf.idf, is originated from information retrieval (IR) field. The intuition behind idf for text categorization seems less reasonable than IR. In this paper, we introduce inverse category frequency (icf) into term weighting scheme and propose two novel approaches, i.e., tf.icf and icf-based supervised term weighting schemes. The tf.icf adopts icf to substitute idf factor and favors terms occurring in fewer categories, rather than fewer documents. And the icf-based approach combines icf and relevance frequency (rf) to weight terms in a supervised way. Our cross-classifier and cross-corpus experiments have shown that our proposed approaches are superior or comparable to six supervised term weighting schemes and three traditional schemes in terms of macro-F1 and micro-F1.
---
PDF链接:
https://arxiv.org/pdf/1012.2609