摘要翻译:
利用经典的共形重标度方法,给出了多Taub-Nut几何上的基本SU(2)反瞬子的显式构造。这些反瞬子在无穷远处对平凡的平坦连接满足所谓的弱完整条件,并迅速衰减。由此得到的单能反瞬子在无穷远处具有微不足道的完整性。我们还充分描述了它们的非框架模空间,发现它是一个在R^3上允许奇异圆盘纤维化的五维空间。在此基础上,我们详细地计算了多Taub-Nut几何的扭转空间及其实际结构,并将反瞬子转化为扭转空间上的全纯向量丛。在这张图中,我们能够证明我们的构造是完全的,因为我们已经构造了上述类型解的模空间的一个全连通分量。我们还证明了在Multi-Taub-Nut空间上存在具有任意高整数能量的反瞬子。
---
英文标题:
《Harmonic functions and instanton moduli spaces on the multi-Taub--NUT
space》
---
作者:
Gabor Etesi, Szilard Szabo
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Physics 物理学
二级分类:General Relativity and Quantum Cosmology 广义相对论与量子宇宙学
分类描述:General Relativity and Quantum Cosmology Areas of gravitational physics, including experiments and observations related to the detection and interpretation of gravitational waves, experimental tests of gravitational theories, computational general relativity, relativistic astrophysics, solutions to Einstein's equations and their properties, alternative theories of gravity, classical and quantum cosmology, and quantum gravity.
广义相对论和量子宇宙学引力物理领域,包括与探测和解释引力波有关的实验和观测、引力理论的实验检验、计算广义相对论、相对论天体物理学、爱因斯坦方程及其性质的解、引力的替代理论、经典宇宙学和量子宇宙学以及量子引力。
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
---
英文摘要:
Explicit construction of the basic SU(2) anti-instantons over the multi-Taub--NUT geometry via the classical conformal rescaling method is exhibited. These anti-instantons satisfiy the so-called weak holonomy condition at infinity with respect to the trivial flat connection and decay rapidly. The resulting unital energy anti-instantons have trivial holonomy at infinity. We also fully describe their unframed moduli space and find that it is a five dimensional space admitting a singular disk-fibration over R^3. On the way, we work out in detail the twistor space of the multi-Taub--NUT geometry together with its real structure and transform our anti-instantons into holomorphic vector bundles over the twistor space. In this picture we are able to demonstrate that our construction is complete in the sense that we have constructed a full connected component of the moduli space of solutions of the above type. We also prove that anti-instantons with arbitrary high integer energy exist on the multi-Taub--NUT space.
---
PDF链接:
https://arxiv.org/pdf/0809.0480