摘要翻译:
当X是奇异复射影簇时,我们证明了Kodaira型消失定理,推广了Navarro-Aznar等人的结果。将Deligne-Illusie分解推广到Du Bois复形证明了这一点。我们还利用UltraProducts给出了Frobenius振幅的新定义(见Math.AG/0202129)。
---
英文标题:
《Frobenius Amplitude, Ultraproducts, and Vanishing on Singular Spaces》
---
作者:
Donu Arapura
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
When X is a singular complex projective variety, we prove a Kodaira type vanishing theorem generalizing results of Navarro Aznar and others. This is proved by extending the Deligne-Illusie decomposition to the Du Bois complex. We also give a new definition of Frobenius amplitude (introduced in math.AG/0202129) using ultraproducts.
---
PDF链接:
https://arxiv.org/pdf/0806.1033