全部版块 我的主页
论坛 经济学人 二区 外文文献专区
469 0
2022-03-14
摘要翻译:
证明了正Kodaira维数半满正则线丛代数流形上的Kahler-Ricci流收敛于其正则模型上唯一的正则度量。本文还证明了在正Kodaira维数的代数流形上存在解析Zariski分解的规范测度。在正则环有限生成的假设下,这种正则测度在双分变换下是唯一的和不变的。
---
英文标题:
《Canonical measures and Kahler-Ricci flow》
---
作者:
Jian Song, Gang Tian
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We show that the Kahler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under birational transformations under the assumption of the finite generation of canonical rings.
---
PDF链接:
https://arxiv.org/pdf/0802.2570
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群