摘要翻译:
本文提出了一种新的自适应滤波器LMS算法中的延迟效应处理算法。我们通过添加噪声发生器产生的噪声来修改抽头权重向量的更新规则。通过两个新的定理研究了该方法的性质。结果表明,本文提出的加噪声LMS(AN-LMS)算法改善了传统LMS算法对失速效应的抵抗能力。本文计算了加性高斯白噪声下的更新概率。研究了该方法的收敛性,证明了在噪声分布均匀的条件下,该方法在期望值意义下的收敛速度与LMS算法相当。最后,与传统的LMS算法相比,该算法的复杂度是线性的。
---
英文标题:
《A New Noise-Assistant LMS Algorithm for Preventing the Stalling Effect》
---
作者:
Hamid Reza Shahdoosti
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
In this paper, we introduce a new algorithm to deal with the stalling effect in the LMS algorithm used in adaptive filters. We modify the update rule of the tap weight vectors by adding noise, generated by a noise generator. The properties of the proposed method are investigated by two novel theorems. As it is shown, the resulting algorithm, called Added Noise LMS (AN-LMS), improves the resistance capability of the conventional LMS algorithm against the stalling effect. The probability of update with additive white Gaussian noise is calculated in the paper. Convergence of the proposed method is investigated and it is proved that the rate of convergence of the introduced method is equal to that of LMS algorithm in the expected value sense, provided that the distribution of the added noise is uniform. Finally, it is shown that the order of complexity of the proposed algorithm is linear as the conventional LMS algorithm.
---
PDF链接:
https://arxiv.org/pdf/1807.07395