摘要翻译:
本工作旨在引入多项式优化理论的框架来求解分数多项式问题(FPPs)。与其他广泛使用的优化框架不同,所提出的优化框架适用于更大类的FPP,不一定由凹凸函数定义。提出了一种可证明收敛且具有渐近最优性的迭代算法。数值结果验证了该方法在多用户、多输入、多输出通信系统能量效率最大化时,在非渐近状态下的精度。
---
英文标题:
《Solving Fractional Polynomial Problems by Polynomial Optimization Theory》
---
作者:
Andrea Pizzo, Alessio Zappone, Luca Sanguinetti
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
This work aims to introduce the framework of polynomial optimization theory to solve fractional polynomial problems (FPPs). Unlike other widely used optimization frameworks, the proposed one applies to a larger class of FPPs, not necessarily defined by concave and convex functions. An iterative algorithm that is provably convergent and enjoys asymptotic optimality properties is proposed. Numerical results are used to validate its accuracy in the non-asymptotic regime when applied to the energy efficiency maximization in multiuser multiple-input multiple-output communication systems.
---
PDF链接:
https://arxiv.org/pdf/1806.0722