英文标题:
《Time-inhomogeneous polynomial processes》
---
作者:
Mar\\\'ia Fernanda del Carmen Agoitia Hurtado and Thorsten Schmidt
---
最新提交年份:
2018
---
英文摘要:
Time homogeneous polynomial processes are Markov processes whose moments can be calculated easily through matrix exponentials. In this work, we develop a notion of time inhomogeneous polynomial processes where the coeffiecients of the process may depend on time. A full characterization of this model class is given by means of their semimartingale characteristics. We show that in general, the computation of moments by matrix exponentials is no longer possible. As an alternative we explore a connection to Magnus series for fast numerical approximations. Time-inhomogeneity is important in a number of applications: in term-structure models, this allows a perfect calibration to available prices. In electricity markets, seasonality comes naturally into play and have to be captured by the used models. The model class studied in this work extends existing models, for example Sato processes and time-inhomogeneous affine processes.
---
中文摘要:
时间齐次多项式过程是马尔可夫过程,其矩可以通过矩阵指数轻松计算。在这项工作中,我们发展了时间非齐次多项式过程的概念,其中过程的系数可能依赖于时间。利用该模型类的半鞅特征给出了该模型类的一个充分刻画。我们证明,一般来说,不再可能通过矩阵指数计算矩。作为另一种选择,我们探索与Magnus级数的联系,以实现快速数值近似。时间不均匀性在许多应用中都很重要:在期限结构模型中,这允许对可用价格进行完美校准。在电力市场中,季节性自然发挥作用,必须通过使用的模型来捕捉。本文研究的模型类扩展了现有的模型,例如Sato过程和时间非齐次仿射过程。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->