摘要翻译:
估计概率变形模板模型是计算机视觉和计算解剖学中概率图谱领域的一种新方法。Allassonni\'ere、Amit和Trouv\'e在[1]中用简单和混合变形模板模型给出了第一个将变异性建模为隐随机变量的相干统计框架。文[2]提出了一种一致随机算法,以解决文[1]所遇到的单分量模型估计算法在噪声存在下的收敛性问题。在一般贝叶斯环境下,我们提出了在混合变形模板模型的情况下,使用类SAEM算法来逼近MAP估计量的方法。我们还证明了该算法对观测值惩罚似然临界点的收敛性,并用手写数字图像说明了这一点。
---
英文标题:
《Stochastic Algorithm For Parameter Estimation For Dense Deformable
Template Mixture Model》
---
作者:
St\'ephanie Allassonni\`ere (CMAP), Estelle Kuhn (LAGA)
---
最新提交年份:
2009
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonni\`ere, Amit and Trouv\'e in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has been introduced in [2] to face the problem encountered in [1] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some "SAEM-like" algorithm to approximate the MAP estimator in the general Bayesian setting of mixture of deformable template model. We also prove the convergence of this algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images.
---
PDF链接:
https://arxiv.org/pdf/802.1521