摘要翻译:
基于优势的粗糙集方法(DRSA)是Pawlak粗糙集理论的推广,在多准则决策分析(MCDA)中具有重要的应用价值。在以前的DRSA模型中,上近似和下近似的定义是保留类并,而不是单例类。本文针对已有的一系列DRSA模型,包括经典DRSA模型、VC-DRSA模型和VP-DRSA模型,提出了一种新的基于类的粗糙逼近方法。此外,还研究了新的基于类的约简。
---
英文标题:
《Class-based Rough Approximation with Dominance Principle》
---
作者:
Junyi Chai, James N.K. Liu
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Complexity 计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Dominance-based Rough Set Approach (DRSA), as the extension of Pawlak's Rough Set theory, is effective and fundamentally important in Multiple Criteria Decision Analysis (MCDA). In previous DRSA models, the definitions of the upper and lower approximations are preserving the class unions rather than the singleton class. In this paper, we propose a new Class-based Rough Approximation with respect to a series of previous DRSA models, including Classical DRSA model, VC-DRSA model and VP-DRSA model. In addition, the new class-based reducts are investigated.
---
PDF链接:
https://arxiv.org/pdf/1106.5601