全部版块 我的主页
论坛 经济学人 二区 外文文献专区
635 0
2022-03-16
摘要翻译:
我们证明了纠错码(ECCs)可以用来构造一个标记数据集,用于“可训练”通信系统的优化,而不牺牲传输已知符号的资源。这使得自适应系统能够在飞行中进行训练,以补偿信道条件的缓慢波动或不同的硬件损伤。我们检验了损坏的训练数据的影响,并表明基于正确标签的训练是至关重要的。该方法可以应用于完全端到端训练的通信系统(自动编码器)以及只有一些可训练组件的系统。这是一个例子,它用一个可训练的预均衡器神经网络(NN)扩展了一个传统的OFDM系统,该网络可以在运行时被优化。
---
英文标题:
《Online Label Recovery for Deep Learning-based Communication through
  Error Correcting Codes》
---
作者:
Stefan Schibisch, Sebastian Cammerer, Sebastian D\"orner, Jakob
  Hoydis, Stephan ten Brink
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  We demonstrate that error correcting codes (ECCs) can be used to construct a labeled data set for finetuning of "trainable" communication systems without sacrificing resources for the transmission of known symbols. This enables adaptive systems, which can be trained on-the-fly to compensate for slow fluctuations in channel conditions or varying hardware impairments. We examine the influence of corrupted training data and show that it is crucial to train based on correct labels. The proposed method can be applied to fully end-to-end trained communication systems (autoencoders) as well as systems with only some trainable components. This is exemplified by extending a conventional OFDM system with a trainable pre-equalizer neural network (NN) that can be optimized at run time.
---
PDF链接:
https://arxiv.org/pdf/1807.00747
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群