全部版块 我的主页
论坛 经济学人 二区 外文文献专区
344 0
2022-03-16
摘要翻译:
人工智能领域的研究不断发展,将人类的知识模拟成自动化的智能知识库,使其能够高效地对知识进行编码和检索,并且始终具有一致性和可扩展性。然而,手边没有一个系统可以匹配人类知识库的多样化能力。在这篇论文中,我们提出了一个不同的系统的理论模型,旨在集成知识的碎片,信息系统(ILS)。ILS将通过跨不同领域链接的知识单元对知识进行编码。提出的ILS由自治的知识单元组成,称为知识网络节点(KNN),它将帮助知识单元有效地交联以编码新的知识。这些链接由解析器和链接管理器进行推理和推断,它们是KNN的一部分。
---
英文标题:
《Informledge System: A Modified Knowledge Network with Autonomous Nodes
  using Multi-lateral Links》
---
作者:
Dr T.R. Gopalakrishnan Nair, Meenakshi Malhotra
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Retrieval        信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--

---
英文摘要:
  Research in the field of Artificial Intelligence is continually progressing to simulate the human knowledge into automated intelligent knowledge base, which can encode and retrieve knowledge efficiently along with the capability of being is consistent and scalable at all times. However, there is no system at hand that can match the diversified abilities of human knowledge base. In this position paper, we put forward a theoretical model of a different system that intends to integrate pieces of knowledge, Informledge System (ILS). ILS would encode the knowledge, by virtue of knowledge units linked across diversified domains. The proposed ILS comprises of autonomous knowledge units termed as Knowledge Network Node (KNN), which would help in efficient cross-linking of knowledge units to encode fresh knowledge. These links are reasoned and inferred by the Parser and Link Manager, which are part of KNN.
---
PDF链接:
https://arxiv.org/pdf/1107.1956
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群