全部版块 我的主页
论坛 经济学人 二区 外文文献专区
372 0
2022-03-17
摘要翻译:
正如B.Totaro所指出的那样,R.Thomas本质上证明了Hodge猜想归纳等价于称为广义Thomas超平面截面的超平面截面的存在,使得给定的本原Hodge类对它的限制不会消失。研究了一般光纤上同调中的消失圈之间的关系,证明了奇异超平面截面上的(0,0)型单幂单数消失圈之间的每一种关系都定义了一个本原Hodge类,使得这个奇异超平面截面是广义Thomas超平面截面当且仅当给定的本原Hodge类与某些构造的本原Hodge类之间的配对不消失。这是P.Griffiths对一个结构的概括。
---
英文标题:
《Generalized Thomas hyperplane sections and relations between vanishing
  cycles》
---
作者:
Morihiko Saito
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  As is remarked by B. Totaro, R. Thomas essentially proved that the Hodge conjecture is inductively equivalent to the existence of a hyperplane section, called a generalized Thomas hyperplane section, such that the restriction to it of a given primitive Hodge class does not vanish. We study the relations between the vanishing cycles in the cohomology of a general fiber, and show that each relation between the vanishing cycles of type (0,0) with unipotent monodromy around a singular hyperplane section defines a primitive Hodge class such that this singular hyperplane section is a generalized Thomas hyperplane section if and only if the pairing between a given primitive Hodge class and some of the constructed primitive Hodge classes does not vanish. This is a generalization of a construction by P. Griffiths.
---
PDF链接:
https://arxiv.org/pdf/0806.1461
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群