摘要翻译:
无人机物流的真正挑战是开发一个经济可行的无人空中机动网络(UAMN)。本文提出了一个综合的机场选址(战略决策)和航线规划(运营决策)优化框架,在保证流量约束、容量约束和电力约束的前提下,使网络总成本最小化。针对需求不确定的基础设施长期规划问题,建立了基于Wasserstein距离的数据驱动的风险规避两阶段随机优化模型。我们发展了一种重列技术,简化了原模型中的最坏情况期望值项,并相应地得到了一个可分折的最小最大求解过程。利用拉格朗日乘子,我们成功地分解了决策变量,降低了计算复杂度。为了提供管理上的见解,我们设计了具体的数字例子。例如,我们发现最优网络配置受到信道容量中“池效应”的影响。我们的DRO框架的一个很好的特点是,在需求不确定的情况下,最优网络设计是相对稳健的。有趣的是,可以选择没有历史需求记录的候选节点来定位机场。我们展示了我们的模型在一个真实的医疗资源运输问题上的应用,与我们的行业合作伙伴一起,将捐献的血液收集到中国杭州的一个血库。
---
英文标题:
《Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven
Risk-Averse Approach》
---
作者:
Wenjuan Hou, Tao Fang, Zhi Pei, Qiao-Chu He
---
最新提交年份:
2020
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
The real challenge in drone-logistics is to develop an economically-feasible Unmanned Aerial Mobility Network (UAMN). In this paper, we propose an integrated airport location (strategic decision) and routes planning (operational decision) optimization framework to minimize the total cost of the network, while guaranteeing flow constraints, capacity constraints, and electricity constraints. To facility expensive long-term infrastructure planning facing demand uncertainty, we develop a data-driven risk-averse two-stage stochastic optimization model based on the Wasserstein distance. We develop a reformulation technique which simplifies the worst-case expectation term in the original model, and obtain a fractable Min-Max solution procedure correspondingly. Using Lagrange multipliers, we successfully decompose decision variables and reduce the complexity of computation. To provide managerial insights, we design specific numerical examples. For example, we find that the optimal network configuration is affected by the "pooling effects" in channel capacities. A nice feature of our DRO framework is that the optimal network design is relatively robust under demand uncertainty. Interestingly, a candidate node without historical demand records can be chosen to locate an airport. We demonstrate the application of our model for a real medical resources transportation problem with our industry partner, collecting donated blood to a blood bank in Hangzhou, China.
---
PDF链接:
https://arxiv.org/pdf/2004.13000