摘要翻译:
工作流构成了一种重要的语言来表示关于过程的知识,但也越来越多地对这种知识进行推理。另一方面,活动之间的时间限制是有限度的。定性区间代数可以利用更精细的时间关系对流程进行建模,但不能再现所有的工作流模式。本文为工作流和区间代数定义了一个共同的基础模型--理论语义,使得与两者一起工作的推理系统能够互操作。多亏了这一点,有趣的性质和推论可以定义,无论是在工作流上,还是在工作流与区间代数相结合的扩展形式上。最后,讨论了类似的形式化方法,为工作流提供了一个良好的形式化基础,并对其进行了扩展。
---
英文标题:
《Extension du formalisme des flux op\'erationnels par une alg\`ebre
temporelle》
---
作者:
Valmi Dufour-Lussier (INRIA Lorraine - LORIA), Florence Le Ber (INRIA
Lorraine - LORIA, LHyGeS), Jean Lieber (INRIA Lorraine - LORIA)
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
Workflows constitute an important language to represent knowledge about processes, but also increasingly to reason on such knowledge. On the other hand, there is a limit to which time constraints between activities can be expressed. Qualitative interval algebras can model processes using finer temporal relations, but they cannot reproduce all workflow patterns. This paper defines a common ground model-theoretical semantics for both workflows and interval algebras, making it possible for reasoning systems working with either to interoperate. Thanks to this, interesting properties and inferences can be defined, both on workflows and on an extended formalism combining workflows with interval algebras. Finally, similar formalisms proposing a sound formal basis for workflows and extending them are discussed.
---
PDF链接:
https://arxiv.org/pdf/1209.5664