摘要翻译:
超声反射层析成像被广泛应用于只能从单面观察到的大型复杂试样的成像,如井系统和核电站安全壳壁。反演测量值的典型方法依赖于延迟和算法,该算法快速产生重建,但具有明显的伪影。近年来,基于模型的线性正向模型重建方法与传统方法相比显着提高了图像质量。然而,由于超声正演模型固有的非线性,即使这些技术也会对复杂物体产生伪影。本文提出了一种基于非线性正演模型的非迭代模型重建方法,用于反演基于非线性正演模型的超声成像测量值。我们的方法包括使用简单的线性反投影获得重建的近似估计,并训练深度
神经网络将其细化到实际重建。我们将我们的方法应用于模拟超声数据,并证明了与延迟和方法和基于线性模型的重建方法相比,图像质量有了显著的改善。
---
英文标题:
《Deep neural networks for non-linear model-based ultrasound
reconstruction》
---
作者:
Hani Almansouri, S.V. Venkatakrishnan, Gregery T. Buzzard, Charles A.
Bouman, and Hector Santos-Villalobos
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Ultrasound reflection tomography is widely used to image large complex specimens that are only accessible from a single side, such as well systems and nuclear power plant containment walls. Typical methods for inverting the measurement rely on delay-and-sum algorithms that rapidly produce reconstructions but with significant artifacts. Recently, model-based reconstruction approaches using a linear forward model have been shown to significantly improve image quality compared to the conventional approach. However, even these techniques result in artifacts for complex objects because of the inherent non-linearity of the ultrasound forward model. In this paper, we propose a non-iterative model-based reconstruction method for inverting measurements that are based on non-linear forward models for ultrasound imaging. Our approach involves obtaining an approximate estimate of the reconstruction using a simple linear back-projection and training a deep neural network to refine this to the actual reconstruction. We apply our method to simulated ultrasound data and demonstrate dramatic improvements in image quality compared to the delay-and-sum approach and the linear model-based reconstruction approach.
---
PDF链接:
https://arxiv.org/pdf/1807.01224