摘要翻译:
福瑞首先论证了辅音和元音的同一性可以从C-V转换中感知;后来,史蒂文斯提出声学标志是语音感知的主要线索,稳态区域是次要的或补充的。声学地标在感知上是显著的,即使是在一种人们不会说的语言中,而且已经证明,不说这种语言的人可以识别诸如地标的主要发音器之类的特征。这些因素为开发与语言无关的自动语音识别提供了一种策略:地标可以从适当标记的语料库中学习一次,并迅速应用于许多其他语言。提出了在多任务学习(MTL)中,利用地标作为辅助任务来增强
神经网络的跨语言可移植性。该网络以资源丰富的源语言进行训练,包括电话和地标标签(英语),然后适应资源不足的目标语言,只有单词标签(Iban)。根据目标语言训练数据的数量,地标任务MTL将源语言的电话错误率相对降低了2.9%,将目标语言的单词错误率相对降低了1.9%-5.9%。这些结果表明,地标任务MTL使DNN学习对跨语言适应有用的隐藏节点特征。
---
英文标题:
《Improved ASR for Under-Resourced Languages Through Multi-Task Learning
with Acoustic Landmarks》
---
作者:
Di He, Boon Pang Lim, Xuesong Yang, Mark Hasegawa-Johnson, Deming Chen
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Furui first demonstrated that the identity of both consonant and vowel can be perceived from the C-V transition; later, Stevens proposed that acoustic landmarks are the primary cues for speech perception, and that steady-state regions are secondary or supplemental. Acoustic landmarks are perceptually salient, even in a language one doesn't speak, and it has been demonstrated that non-speakers of the language can identify features such as the primary articulator of the landmark. These factors suggest a strategy for developing language-independent automatic speech recognition: landmarks can potentially be learned once from a suitably labeled corpus and rapidly applied to many other languages. This paper proposes enhancing the cross-lingual portability of a neural network by using landmarks as the secondary task in multi-task learning (MTL). The network is trained in a well-resourced source language with both phone and landmark labels (English), then adapted to an under-resourced target language with only word labels (Iban). Landmark-tasked MTL reduces source-language phone error rate by 2.9% relative, and reduces target-language word error rate by 1.9%-5.9% depending on the amount of target-language training data. These results suggest that landmark-tasked MTL causes the DNN to learn hidden-node features that are useful for cross-lingual adaptation.
---
PDF链接:
https://arxiv.org/pdf/1805.05574