摘要翻译:
在这篇文章中,我们提出了一个精英水平遍历机制,我们设计了一个基于种群的进化算法求解单峰函数的边界。我们从理论上证明了它的有效性,并在OneMax函数上进行了检验,得到了c{\mu}n log n-o({\mu}n)的界。这种分析可以推广到使用锦标赛选择和遗传算子的任何类似算法,这些算子在每个字符串中只翻转或交换1个比特。
---
英文标题:
《Elitism Levels Traverse Mechanism For The Derivation of Upper Bounds on
Unimodal Functions》
---
作者:
Aram Ter-Sarkisov
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this article we present an Elitism Levels Traverse Mechanism that we designed to find bounds on population-based Evolutionary algorithms solving unimodal functions. We prove its efficiency theoretically and test it on OneMax function deriving bounds c{\mu}n log n - O({\mu} n). This analysis can be generalized to any similar algorithm using variants of tournament selection and genetic operators that flip or swap only 1 bit in each string.
---
PDF链接:
https://arxiv.org/pdf/1202.5284