摘要翻译:
本文提出了一种自适应算法,迭代更新混合重要抽样密度的权值和分量参数,以优化用熵准则度量的重要抽样性能。结果表明,该方法适用于重要抽样密度的广泛类别,其中特别包括多元学生t分布的混合。在人工和实际的例子中研究了该方案的性能,特别强调了一种新的Rao-Blackwellisation设备的优点,该设备可以很容易地结合在更新方案中。
---
英文标题:
《Adaptive Importance Sampling in General Mixture Classes》
---
作者:
Olivier Capp\'e (LTCI), Randal Douc (CMAP), Arnaud Guillin (LATP),
Jean-Michel Marin (INRIA Futurs), Christian P. Robert (CEREMADE)
---
最新提交年份:
2008
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.
---
PDF链接:
https://arxiv.org/pdf/710.4242