摘要翻译:
我们证明了如果X是特征零点的不可数代数闭域k上的一个变数,那么X的奇点分解上的任何不可约例外因子E都属于Nash映射的象,即对应于X上以星X为中心的弧空间的不可约分量。这就把弧的Nash问题归结为了解Nash映射象中哪些是无迹的本质因子,更一般地说是如何从弧空间中确定无迹的本质因子。
---
英文标题:
《Exceptional divisors which are not uniruled belong to the image of the
Nash map》
---
作者:
Monique Lejeune-Jalabert, Ana J. Reguera
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that, if X is a variety over an uncountable algebraically closed field k of characteristic zero, then any irreducible exceptional divisor E on a resolution of singularities of X which is not uniruled, belongs to the image of the Nash map, i.e. corresponds to an irreducible component of the space of arcs on X centered in Sing X. This reduces the Nash problem of arcs to understanding which uniruled essential divisors are in the image of the Nash map, more generally, how to determine the uniruled essential divisors from the space of arcs.
---
PDF链接:
https://arxiv.org/pdf/0811.2421