摘要翻译:
Givental在[Gi3]中引入并研究了一个形式亏格为零的Gromov-Witten空间Gw_0$,即满足弦方程和dilaton方程的函数和拓扑递推关系。该理论中的一个中心角色是某些拉格朗日锥的几何和隐对称的扭曲辛群。在这篇注记中,我们证明了关于这个群作用的拉格朗日锥描述与Givental的量子哈密顿形式的亏格零部分是一致的。作为应用,我们明确地证明了具有模弦流的下三角扭辛群的$n=1$形式亏格零GW理论的空间。
---
英文标题:
《$N=1$ formal genus $0$ Gromov-Witten theories and Givental's formalism》
---
作者:
Evgeny Feigin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In [Gi3] Givental introduced and studied a space of formal genus zero Gromov-Witten theories $GW_0$, i.e. functions satisfying string and dilaton equations and topological recursion relations. A central role in the theory plays the geometry of certain Lagrangian cones and a twisted symplectic group of hidden symmetries. In this note we show that the Lagrangian cones description of the action of this group coincides with the genus zero part of Givental's quantum Hamiltonian formalism. As an application we identify explicitly the space of $N=1$ formal genus zero GW theories with lower-triangular twisted symplectic group modulo the string flow.
---
PDF链接:
https://arxiv.org/pdf/0803.3554