摘要翻译:
设$A$是正方形自由导体$N$的$\q$上的椭圆曲线。我们证明了如果$a$有一个素数阶的有理扭转点$R$使得$R$不除$6N$,则$R$除$J_0(N)$的尖点子群的阶。
---
英文标题:
《Rational torsion in elliptic curves and the cuspidal subgroup》
---
作者:
Amod Agashe
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $A$ be an elliptic curve over $\Q$ of square free conductor $N$. We prove that if $A$ has a rational torsion point of prime order $r$ such that $r$ does not divide $6N$, then $r$ divides the order of the cuspidal subgroup of $J_0(N)$.
---
PDF链接:
https://arxiv.org/pdf/0810.5181