摘要翻译:
尼尔流形是幂零群$G$与一个共紧离散子群的商。复零流形是具有$G$-不变复结构的零流形。我们证明了复Nilgionold具有平凡的规范丛。它用于研究超复Nilfiolds(具有满足四元数关系的三个$G$-不变复结构的Nilfiolds)。证明了一个超复Nilfiold允许HKT(hyperkahler with torsion)度量当且仅当其下的超复结构是阿贝尔的。此外,Nilfiold上的任何$G$-不变HKT-度量对于所有相关的复杂结构都是平衡的。
---
英文标题:
《Canonical bundles of complex nilmanifolds, with applications to
  hypercomplex geometry》
---
作者:
Maria Laura Barberis, Isabel G. Dotti and Misha Verbitsky
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
  A nilmanifold is a quotient of a nilpotent group $G$ by a co-compact discrete subgroup. A complex nilmanifold is one which is equipped with a $G$-invariant complex structure. We prove that a complex nilmanifold has trivial canonical bundle. This is used to study hypercomplex nilmanifolds (nilmanifolds with a triple of $G$-invariant complex structures which satisfy quaternionic relations). We prove that a hypercomplex nilmanifold admits an HKT (hyperkahler with torsion) metric if and only if the underlying hypercomplex structure is abelian. Moreover, any $G$-invariant HKT-metric on a nilmanifold is balanced with respect to all associated complex structures. 
---
PDF链接:
https://arxiv.org/pdf/0712.3863