摘要翻译:
对于定义在F_q上的曲线C上的给定二次丛X,我们计算了C在X中的阶为d且高度为e>>1的不可约分支覆盖。作为一个特例,我们得到了函数域F_q(C)上度为d且高度为e的代数数的个数。
---
英文标题:
《Counting Multisections in Conic Bundles over a Curve defined over F_q》
---
作者:
Seyfi Turkelli
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a given conic bundle X over a curve C defined over F_q, we count irreducible branch covers of C in X of degree d and height e>>1. As a special case, we get the number of algebraic numbers of degree d and height e over the function field F_q (C).
---
PDF链接:
https://arxiv.org/pdf/0809.0954