摘要翻译:
在一般情况下讨论频繁模式挖掘问题。通过对抽象表示、摘要和频繁模式挖掘的分析,我们得到了该问题的一个推广。然后,我们展示了如何将这个问题投射到强大的算法信息论语言中。这允许我们制定一个简单的算法来挖掘所有频繁模式。
---
英文标题:
《Abstract Representations and Frequent Pattern Discovery》
---
作者:
Eray Ozkural
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We discuss the frequent pattern mining problem in a general setting. From an analysis of abstract representations, summarization and frequent pattern mining, we arrive at a generalization of the problem. Then, we show how the problem can be cast into the powerful language of algorithmic information theory. This allows us to formulate a simple algorithm to mine for all frequent patterns.
---
PDF链接:
https://arxiv.org/pdf/1202.2167