摘要翻译:
对于定义在代数函数域上的任意秩2 Drinfeld模rho,我们考虑了它的周期矩阵P,它类似于定义在数域上的椭圆曲线的周期矩阵。假定F_q的特征为奇数,rho为无复数乘法。我们证明了P的项在F_q(theta)上生成的域的超越度为4。因此,我们还证明了F_q(theta)上线性无关的代数函数的Drinfeld对数的代数无关性。
---
英文标题:
《Algebraic relations among periods and logarithms of rank 2 Drinfeld
modules》
---
作者:
Chieh-Yu Chang, Matthew A. Papanikolas
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For any rank 2 Drinfeld module rho defined over an algebraic function field, we consider its period matrix P, which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of F_q is odd and rho is without complex multiplication. We show that the transcendence degree of the field generated by the entries of P over F_q(theta) is 4. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over F_q(theta).
---
PDF链接:
https://arxiv.org/pdf/0807.3157