摘要翻译:
设FA是交换Noetherian环R的理想,M和N是两个有限生成的R-模。设\cd_{\fa}(M,N)表示i的上确界,使得h^i_{\fa}(M,N)\neq0。首先,利用Gorenstein同调维数理论,得到了cd_{fa}(M,N)的几个上界。其次,在Cohen-Macaulay局部环(R,\fm)上,我们证明了当M的射影维数或N的内射维数是有限的时,\cd_{\fm}(M,N)=\dim R-级(\ann_rn,M)。最后,在这类环上,我们在广义局部上同调模的情况下建立了Hartshorne-Lichtenbaum消失定理的一个类似定理。
---
英文标题:
《Generalized local cohomology modules and homological Gorenstein
dimensions》
---
作者:
Kamran Divaani-Aazar and Alireza Hajikarimi
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let \fa be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Let \cd_{\fa}(M,N) denote the supremum of the i's such that H^i_{\fa}(M,N)\neq 0. First, by using the theory of Gorenstein homological dimensions, we obtain several upper bounds for \cd_{\fa}(M,N). Next, over a Cohen-Macaulay local ring (R,\fm), we show that \cd_{\fm}(M,N)=\dim R-\grade(\Ann_RN,M), provided that either projective dimension of M or injective dimension of N is finite. Finally, over such rings, we establish an analogue of the Hartshorne-Lichtenbaum Vanishing Theorem in the context of generalized local cohomology modules.
---
PDF链接:
https://arxiv.org/pdf/0803.0107