全部版块 我的主页
论坛 经济学人 二区 外文文献专区
269 0
2022-03-21
摘要翻译:
共识加速图滤波器的优化设计与共识迭代矩阵的特征值密切相关。迭代矩阵特征值不确定的随机网络使这一任务变得复杂。基于一致迭代矩阵谱渐近性的大规模随机无向网络滤波器设计方法已被发展为常量网络拓扑和时变网络拓扑。这项工作建立在这些结果的基础上,将分析扩展到大规模的,恒定的,随机的有向网络。所提出的方法利用Girko的定理,对合适的非厄米随机矩阵解析地产生经验谱分布的确定性近似。在所提出的滤波器优化问题中,近似经验谱分布定义了滤波区域,必须对其进行修改以适应复数特征值。给出的数值模拟结果表明了良好的效果。此外,还讨论了该方法的局限性。
---
英文标题:
《Optimal Filter Design for Consensus on Random Directed Graphs》
---
作者:
Stephen Kruzick and Jos\'e M. F. Moura
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Optimal design of consensus acceleration graph filters relates closely to the eigenvalues of the consensus iteration matrix. This task is complicated by random networks with uncertain iteration matrix eigenvalues. Filter design methods based on the spectral asymptotics of consensus iteration matrices for large-scale, random undirected networks have been previously developed both for constant and for time-varying network topologies. This work builds upon these results by extending analysis to large-scale, constant, random directed networks. The proposed approach uses theorems by Girko that analytically produce deterministic approximations of the empirical spectral distribution for suitable non-Hermitian random matrices. The approximate empirical spectral distribution defines filtering regions in the proposed filter optimization problem, which must be modified to accommodate complex-valued eigenvalues. Presented numerical simulations demonstrate good results. Additionally, limitations of the proposed method are discussed.
---
PDF链接:
https://arxiv.org/pdf/1802.10152
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群