摘要翻译:
提出了一种自适应结构化低秩MR图像恢复算法,从欠采样Fourier系数中恢复MR图像。图像被建模为分段常数分量和分段线性分量的组合。每个分量的Fourier系数满足一个湮没关系,从而得到一个结构化的Toeplitz矩阵。利用矩阵的低秩性质,构造了一个能有效求解的组合正则化优化问题。数值实验表明,该算法比以前提出的算法具有更好的恢复性能。
---
英文标题:
《Adaptive structured low rank algorithm for MR image recovery》
---
作者:
Yue Hu, Xiaohan Liu, Mathews Jacob
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
We introduce an adaptive structured low rank algorithm to recover MR images from their undersampled Fourier coefficients. The image is modeled as a combination of a piecewise constant component and a piecewise linear component. The Fourier coefficients of each component satisfy an annihilation relation, which results in a structured Toeplitz matrix. We exploit the low rank property of the matrices to formulate a combined regularized optimization problem, which can be solved efficiently. Numerical experiments indicate that the proposed algorithm provides improved recovery performance over the previously proposed algorithms.
---
PDF链接:
https://arxiv.org/pdf/1805.05013