摘要翻译:
利用Voisin的构造,我们给出了定义在数域k上的光滑射影簇和k上的两个复嵌入,使得由这些嵌入诱导的两个复流形具有实数系数的非同构上同调代数。这与具有l-adic系数的上同调代数对于任何素数l都是规范同构的事实形成了对比,并回答了Grothendieck的一个问题。
---
英文标题:
《Conjugate varieties with distinct real cohomology algebras》
---
作者:
Fran\c{c}ois Charles
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Using constructions of Voisin, we exhibit a smooth projective variety defined over a number field k and two complex embeddings of k, such that the two complex manifolds induced by these embeddings have non isomorphic cohomology algebras with real coefficients. This contrasts with the fact that the cohomology algebras with l-adic coefficients are canonically isomorphic for any prime number l, and answers a question of Grothendieck.
---
PDF链接:
https://arxiv.org/pdf/0706.3674