摘要翻译:
考虑一个过程,随机的或确定性的,通过使用数值积分格式,或通过涉及积分逼近的蒙特卡罗方法,或通过牛顿-拉夫逊迭代逼近方程的根而得到。我们将假定我们可以从时间0到有限时间n的过程的分布中取样。我们提出了一个过程极限值的无偏估计和标准误差估计方案,并将其应用于Heston随机波动率模型中的数值积分、求根和期权定价等实例。这使得无偏估计量取代了有偏估计量,有许多潜在的应用。
---
英文标题:
《A general method for debiasing a Monte Carlo estimator》
---
作者:
Don McLeish
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Computer Science 计算机科学
二级分类:Numerical Analysis 数值分析
分类描述:cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
cs.na是Math.na的别名。大致包括ACM学科类G.1的材料。
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
Consider a process, stochastic or deterministic, obtained by using a numerical integration scheme, or from Monte-Carlo methods involving an approximation to an integral, or a Newton-Raphson iteration to approximate the root of an equation. We will assume that we can sample from the distribution of the process from time 0 to finite time n. We propose a scheme for unbiased estimation of the limiting value of the process, together with estimates of standard error and apply this to examples including numerical integrals, root-finding and option pricing in a Heston Stochastic Volatility model. This results in unbiased estimators in place of biased ones i nmany potential applications.
---
PDF链接:
https://arxiv.org/pdf/1005.2228