摘要翻译:
在设计的Gram矩阵上的相互相干假设和两种不同的噪声假设:高斯噪声和有限方差的一般噪声下,我们同时得到了高维线性回归模型中Lasso和Dantzig估计的$L_{infty}$收敛速度。同时证明了在目标向量的非零分量不太小的情况下,适当选择阈值的Lasso和Dantzig估计具有符号集中性质。
---
英文标题:
《Sup-norm convergence rate and sign concentration property of Lasso and
Dantzig estimators》
---
作者:
Karim Lounici
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We derive the $l_{\infty}$ convergence rate simultaneously for Lasso and Dantzig estimators in a high-dimensional linear regression model under a mutual coherence assumption on the Gram matrix of the design and two different assumptions on the noise: Gaussian noise and general noise with finite variance. Then we prove that simultaneously the thresholded Lasso and Dantzig estimators with a proper choice of the threshold enjoy a sign concentration property provided that the non-zero components of the target vector are not too small.
---
PDF链接:
https://arxiv.org/pdf/801.461