摘要翻译:
回顾最近关于将基于阈值的抽样描述为准等距映射的结果,导出了事件序列空间的度量和拓扑结构的数学含义。在此背景下,将事件序列空间推广到具有Hermann Weyl差异测度的赋范空间。用Jordan分解性质刻画了有限差分范数序列。它的对偶范数原来是总变差的范数。作为副产品,得到了序列缺乏单调性的一个测度。进一步的结果是差异范数与总变差之间的一个不等式,类似于海森堡的测不准关系。
---
英文标题:
《On the Discrepancy Normed Space of Event Sequences for Threshold-based
Sampling》
---
作者:
Bernhard A. Moser
---
最新提交年份:
2018
---
分类信息:
一级分类:Mathematics 数学
二级分类:Metric Geometry 度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Recalling recent results on the characterization of threshold-based sampling as quasi-isometric mapping, mathematical implications on the metric and topological structure of the space of event sequences are derived. In this context, the space of event sequences is extended to a normed space equipped with Hermann Weyl's discrepancy measure. Sequences of finite discrepancy norm are characterized by a Jordan decomposition property. Its dual norm turns out to be the norm of total variation. As a by-product a measure for the lack of monotonicity of sequences is obtained. A further result refers to an inequality between the discrepancy norm and total variation which resembles Heisenberg's uncertainty relation.
---
PDF链接:
https://arxiv.org/pdf/1806.06273