摘要翻译:
本文给出了计算复射影曲面超越格的Zariski-van Kampen型方法。作为应用,我们计算了复奇异K3曲面的超越格,它与定义在实二次域上的A_{10}+A_{9}$型最大化性元的算术Zariski对相关,并且在有理数域上彼此共轭。
---
英文标题:
《Zariski-van Kampen method and transcendental lattices of certain
singular K3 surfaces》
---
作者:
Ken-ichiro Arima, Ichiro Shimada
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular K3 surfaces associated with an arithmetic Zariski pair of maximizing sextics of type $A_{10}+A_{9}$ that are defined over a real quadratic field and are conjugate to each other over the field of rational numbers.
---
PDF链接:
https://arxiv.org/pdf/0806.3311