全部版块 我的主页
论坛 经济学人 二区 外文文献专区
485 0
2022-03-23
摘要翻译:
通过部署双功能雷达通信系统,可以缓解频谱拥塞和频带竞争,雷达平台将其自身作为一个二级通信功能的机会系统。本文提出了一种利用稀疏天线阵结构将通信信息嵌入多输入多输出(MIMO)雷达发射中的新技术。传感器阵列中由天线位移引起的相位是唯一的,这使得阵列结构对于符号嵌入是可行的。我们还利用了在MIMO雷达系统中,独立波形与发射天线的关联可以在不同的脉冲重复周期内改变而不影响雷达功能的事实。我们表明,通过天线选择和波形-天线重排序来重新配置稀疏发射阵列,在中等数量的发射天线下可以获得每秒兆比特的数据速率。为了解决实际实现中的问题,我们提出了一种基于正则化天线选择的信令方案。分析了可能的数据速率,并导出了符号/比特误码率。仿真实例用于性能评估,并证明了所提出的DFRC技术的有效性。
---
英文标题:
《Dual-Function MIMO Radar Communications System Design Via Sparse Array
  Optimization》
---
作者:
Xiangrong Wang, Aboulnasr Hassanien, Moeness Amin
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Spectrum congestion and competition over frequency bandwidth could be alleviated by deploying dual-function radar-communications systems, where the radar platform presents itself as a system of opportunity to secondary communication functions. In this paper, we propose a new technique for communication information embedding into the emission of multiple-input multiple-output (MIMO) radar using sparse antenna array configurations. The phases induced by antenna displacements in a sensor array are unique, which makes array configuration feasible for symbol embedding. We also exploit the fact that in a MIMO radar system, the association of independent waveforms with the transmit antennas can change over different pulse repetition periods without impacting the radar functionality. We show that by reconfiguring sparse transmit array through antenna selection and reordering waveform-antenna paring, a data rate of megabits per second can be achieved for a moderate number of transmit antennas. To counteract practical implementation issues, we propose a regularized antenna selection based signaling scheme. The possible data rate is analyzed and the symbol/bit error rates are derived. Simulation examples are provided for performance evaluations and to demonstrate the effectiveness of proposed DFRC techniques.
---
PDF链接:
https://arxiv.org/pdf/1808.0494
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群