摘要翻译:
本文研究了混合波束形成大规模天线发射机的数字预失真(DPD)线性化。提出了一种新的天线子阵DPD处理和学习技术,它利用单个功率放大器(PA)输出的组合信号和基于解相关的学习规则。实际上,所提出的方法使目标接收机方向上的非线性失真最小化。这一特性是非常理想的,因为其他方向的发射由于波束形成而自然较弱。所提出的参数学习技术只需要单个观测接收机,因此支持简单的硬件实现。它还显示出明显优于目前最先进的技术,该技术仅利用单个PA进行学习。对反馈网络幅值和相位不平衡的分析表明,即使在这种不平衡的高水平下,该技术也是鲁棒的。最后,我们还表明,由于DPD和波束形成的共同作用,阵列系统的带外发射在所有空间方向上都表现良好,基本上低于相应的单天线发射机的带外发射。
---
英文标题:
《Digital Predistortion for Hybrid MIMO Transmitters》
---
作者:
Mahmoud Abdelaziz, Lauri Anttila, Alberto Brihuega, Fredrik Tufvesson
and Mikko Valkama
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This article investigates digital predistortion (DPD) linearization of hybrid beamforming large-scale antenna transmitters. We propose a novel DPD processing and learning technique for an antenna sub-array, which utilizes a combined signal of the individual power amplifier (PA) outputs in conjunction with a decorrelation-based learning rule. In effect, the proposed approach results in minimizing the nonlinear distortions in the direction of the intended receiver. This feature is highly desirable, since emissions in other directions are naturally weak due to beamforming. The proposed parameter learning technique requires only a single observation receiver, and therefore supports simple hardware implementation. It is also shown to clearly outperform the current state-of-the-art technique which utilizes only a single PA for learning. Analysis of the feedback network amplitude and phase imbalances reveals that the technique is robust even to high levels of such imbalances. Finally, we also show that the array system out-of-band emissions are well-behaving in all spatial directions, and essentially below those of the corresponding single-antenna transmitter, due to the combined effects of the DPD and beamforming.
---
PDF链接:
https://arxiv.org/pdf/1804.02178