全部版块 我的主页
论坛 经济学人 二区 外文文献专区
425 0
2022-03-06
摘要翻译:
与传统的小规模MIMO技术相比,大规模多用户(MU)多输入多输出(MIMO)技术在频谱效率方面有显著的提高。线性均衡算法,例如基于零强迫(ZF)或最小均方误差(MMSE)的方法,通常依赖于基站(BS)处的集中处理,这导致(i)过高的互连和芯片输入/输出数据速率,以及(ii)高计算复杂度。在本文中,我们研究了分散均衡的可实现率,以缓解这两个问题。我们考虑两种不同的BS结构,将天线阵列划分成簇,每个簇与独立的射频链和信号处理硬件相关联,每个簇的结果在前馈网络中融合。对于这两种结构,我们考虑了ZF、MMSE和一种新的基于近似消息传递(AMP)的非线性均衡算法,并从理论上分析了这两种方法的可实现速率。我们的结果表明,与集中式解决方案相比,基于放大器的分散均衡方法在可实现速率方面没有或只有可以忽略的损失。
---
英文标题:
《On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO
  Systems》
---
作者:
Charles Jeon, Kaipeng Li, Joseph R. Cavallaro, and Christoph Studer
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  Massive multi-user (MU) multiple-input multiple-output (MIMO) promises significant gains in spectral efficiency compared to traditional, small-scale MIMO technology. Linear equalization algorithms, such as zero forcing (ZF) or minimum mean-square error (MMSE)-based methods, typically rely on centralized processing at the base station (BS), which results in (i) excessively high interconnect and chip input/output data rates, and (ii) high computational complexity. In this paper, we investigate the achievable rates of decentralized equalization that mitigates both of these issues. We consider two distinct BS architectures that partition the antenna array into clusters, each associated with independent radio-frequency chains and signal processing hardware, and the results of each cluster are fused in a feedforward network. For both architectures, we consider ZF, MMSE, and a novel, non-linear equalization algorithm that builds upon approximate message passing (AMP), and we theoretically analyze the achievable rates of these methods. Our results demonstrate that decentralized equalization with our AMP-based methods incurs no or only a negligible loss in terms of achievable rates compared to that of centralized solutions.
---
PDF链接:
https://arxiv.org/pdf/1705.02976
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群