全部版块 我的主页
论坛 经济学人 二区 外文文献专区
455 0
2022-03-23
摘要翻译:
我们给出了一个有效的S=1/2方法来描述S>=1中随机场产生的有效性的分析和数值证据,特别是在S=1中,具有强单轴伊辛各向异性和横向弱外磁场Bx的偶极自旋玻璃模型。在对一个微观的S=1玩具模型的有效低能描述中,Bx依赖的随机场自然出现。我们讨论了在横向场作用下LiHo$_x$Y$_1-x}$F$_4$磁性材料中具有Ho$^3+}$Ising矩的Bx诱导随机场的最新理论研究结果。我们证明了S_{eff}=1/2方法在小Bx下能同时捕捉物理的定性和定量方面,给出了与传统的二阶微扰理论相一致的结果。
---
英文标题:
《Effective Spin-1/2 Description of Transverse-Field-Induced Random Fields
  in Dipolar Spin Glasses with Strong Single-Ion Anisotropy》
---
作者:
S. M. A. Tabei, F. Vernay and M. J. P. Gingras
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Disordered Systems and Neural Networks        无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We present analytical and numerical evidence for the validity of an effective S=1/2 approach to the description of random field generation in S>=1, and especially in an S=1, dipolar spin glass models with strong uniaxial Ising anisotropy and subject to weak external magnetic field Bx transverse to the Ising direction. Explicitely Bx-dependent random fields are shown to naturally emerge in the effective low-energy description of a microscopic S=1 toy model. We discuss our results in relation to recent theoretical studies pertaining to the topic of Bx-induced random fields in the LiHo$_x$Y$_{1-x}$F$_4$ magnetic materials with the Ho$^{3+}$ Ising moments subject to a transverse field. We show that the S_{eff}=1/2 approach is able to capture both the qualitative and quantitative aspects of the physics at small Bx, giving results that agree with those obtained using conventional second order perturbation theory.
---
PDF链接:
https://arxiv.org/pdf/708.2286
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群