摘要翻译:
本文给出了二元有理函数域上一般椭圆曲线秩的一种计算方法。我们把这个问题归结为计算加权射影4-空间中奇异超曲面的上同调。然后给出了一类奇异超曲面的上同调计算方法,将Dimca的工作推广到孤立奇异情形。
---
英文标题:
《Calculating the Mordell-Weil rank of elliptic threefolds and the
cohomology of singular hypersurfaces》
---
作者:
Klaus Hulek and Remke Kloosterman
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective 4-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.
---
PDF链接:
https://arxiv.org/pdf/0806.2025