摘要翻译:
设$X\子集\MathBB P^{n+1}$是光滑复射影超曲面。本文证明了如果$x$的阶足够大,则在$x$上存在$n$级不变喷射微分丛的全局截面,且在一个充分的除数上消失。我们还证明了对数对$(\mathbb p^n,D)$的低维有效的对数形式,其中$D$是高阶光滑不可约因子。而且,这些结果是尖锐的,\emph{即}一个人不能有这样的级数小于$N$的喷射微分。
---
英文标题:
《Existence of global invariant jet differentials on projective
hypersurfaces of high degree》
---
作者:
Simone Diverio
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
Let $X\subset\mathbb P^{n+1}$ be a smooth complex projective hypersurface. In this paper we show that, if the degree of $X$ is large enough, then there exist global sections of the bundle of invariant jet differentials of order $n$ on $X$, vanishing on an ample divisor. We also prove a logarithmic version, effective in low dimension, for the log-pair $(\mathbb P^n,D)$, where $D$ is a smooth irreducible divisor of high degree. Moreover, these result are sharp, \emph{i.e.} one cannot have such jet differentials of order less than $n$.
---
PDF链接:
https://arxiv.org/pdf/0802.0045