摘要翻译:
在条件设置中,我们提供了定义在$L^{p}$类型的$L^{0}$模上的拟凸风险度量与相应的对偶函数类之间的完全对偶。这是基于一个推广了拟凸实值映射通常Penot-Volle表示的一般结果。
---
英文标题:
《Complete duality for quasiconvex dynamic risk measures on modules of the
$L^{p}$-type》
---
作者:
Marco Frittelli and Marco Maggis
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
In the conditional setting we provide a complete duality between quasiconvex risk measures defined on $L^{0}$ modules of the $L^{p}$ type and the appropriate class of dual functions. This is based on a general result which extends the usual Penot-Volle representation for quasiconvex real valued maps.
---
PDF链接:
https://arxiv.org/pdf/1201.1788