全部版块 我的主页
论坛 经济学人 二区 外文文献专区
293 0
2022-03-25
摘要翻译:
特征选择是高维数据分析和分类中的一个重要问题。传统的特征选择方法集中在基于冗余准则的特征检测上,使用学习和特征搜索方案。相比之下,我们提出了一种基于特征在类之间的区分能力来识别选择特征的必要性的方法。属性的特征与特征比较所产生的类间和类内距离之间的重叠面积被用作特征区分能力的度量。在由选择阈值定义的公差程度内具有最低重叠面积的模式中的一组最近属性被选择来表示最佳可用的可识别特征。本文报告了利用所提出的特征选择方案和最近邻分类器对模式分类问题进行识别的最新结果。这些结果是用具有高维特征向量的基准数据库在涉及图像和微阵列数据的问题中报告的。
---
英文标题:
《Feature selection using nearest attributes》
---
作者:
Alex Pappachen James and Sima Dimitrijev
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Feature selection is an important problem in high-dimensional data analysis and classification. Conventional feature selection approaches focus on detecting the features based on a redundancy criterion using learning and feature searching schemes. In contrast, we present an approach that identifies the need to select features based on their discriminatory ability among classes. Area of overlap between inter-class and intra-class distances resulting from feature to feature comparison of an attribute is used as a measure of discriminatory ability of the feature. A set of nearest attributes in a pattern having the lowest area of overlap within a degree of tolerance defined by a selection threshold is selected to represent the best available discriminable features. State of the art recognition results are reported for pattern classification problems by using the proposed feature selection scheme with the nearest neighbour classifier. These results are reported with benchmark databases having high dimensional feature vectors in the problems involving images and micro array data.
---
PDF链接:
https://arxiv.org/pdf/1201.5946
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群